California Department of Water Resources, Climate Change Technical Advisory Group, Subgroup on Climate Scenarios Strengths/Weaknesses and Criteria for Climate Model Scenarios – 5-22-12 | | 12 CAT Scenarios | 5 BDCP Scenarios | CVP-IRP Modified BDCP Scenarios | |------------|---|--|--| | Strengths | Scenario selection based on GCMs using criteria developed by CAT—More descriptive than a strength or weakness, as it stands Climate evolves; dynamic future Thoroughly peer reviewed in published literature. Used extensively in past statewide impact evaluations. Provides new examples of variability as displayed in projections; doesn't rely on historical sequence of events for its interannual/inter-decadal variability. Provides new, individual realizations of the future projection distribution. | May capture wider range of possible potential future climate using a smaller set of scenarios Includes 3 emissions scenarios Based on information from the available 112 CMIP3 projections Aggregation method de-emphasizes technical inconsistencies associated with individual climate projections | Climate dynamically evolves through time. Same strengths as BDCP | | Weaknesses | Ended up being biased toward drier side of projections May not capture realistic climate variability, especially at interdecadal scale. Does not capture full range of uncertainty as described by the full CMIP3 archive of projections. Has not been reevaluated since completion in 2008—new methods, research are available. Does not provide a single central tendency or most likely outcome that can be used for detailed/project level decision making Unsure if selection of models provides the appropriate sampling needed for given DWR studies. | Climate change is represented by a sequence of static (30-yr avg) snapshots, then mapped onto historic sequences Does not capture extremes of temp, precip unless mapped to historical pattern Does not allow for new (potentially enhanced) extremes not yet seen in historic sequence Computationally burdensome—requires considerable resources and expertise to modify in any way. Only available at two time periods; 2025, 2060 Not yet thoroughly peer reviewed. Collapses variability of multiple projections into ensemble average, potentially masking a more realistic representation of hydrologic variability. Only maintains spatial continuity and structure of the projections by luck. | All scenarios follow same sequence of wet and dry years as historical record (i.e. driest years on record are followed by very wet- 1976-79) Provides relatively limited representation of extreme precipitation/drought years when compared to GCMs. Most of the same weaknesses as BDCP. | ## Technical Criteria for Selecting Climate Scenarios - Capturing precipitation variability is important - Select among CAT, BDCP, or GCM scenarios using approach that yields the types of water-management-related cc changes most important - Want to capture extremes, including extended dry periods, and observe 30 year running average precipitation - Matching historical record is not a predictor of confidence of future projections - Mimic historical variation - Select scenarios that can be used for multiple planning purposes; that are inter-comparable to other agencies and institutions